
Solving Geometric TSP with Ants

Thang N. Bui and Mufit Colpan
Computer Science Program

The Pennsylvania State University at Harrisburg
Middletown, PA 17057

{tbui, muc135}@psu.edu

ABSTRACT
This paper presents an ant-based approach for solving the
Traveling Salesman Problem (TSP). Novel concepts of this
algorithm that distinguish it from the other heuristics are
the inclusion of a preprocessing stage and the use of a modi-
fied version of an ant-based approach with local optimization
in multi stages. Experimental results show that this algo-
rithm outperforms ACS [1] and is comparable to MMAS [4]
for Euclidean TSP instances. Of the 40 instances of Eu-
clidean TSP from TSPLIB [5] that were tested, this algo-
rithm found the optimal solution for 37 instances. For the
remaining instances, this algorithm returned solutions that
were within 0.3% of the optimum.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Design, Algorithms

Keywords
Traveling Salesman Problem, Ant System

1. INTRODUCTION
The Traveling Salesman Problem (TSP) is the prototypi-

cal optimization problem that is difficult to overcome but is
both short and easy to state: given n cities such that there
is a direct edge between any two of them, and each edge
is assigned a cost, the task is to find the cheapest way of
visiting each city exactly once starting and finishing at the
same city.

The set of edges used in traveling the cities as stated is
referred to as a Hamiltonian tour and the sum of all the
edge costs in the tour is called the tour cost.

The TSP asks for the smallest cost Hamiltonian tour in a
complete undirected graph with positive costs on the edges.
More formally, the TSP is defined as follows:

Input: A complete undirected graph G = (V, E) with ver-
tex set V , edge set E, and a weight function w : E →
R+.

Copyright is held by the author/owner.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

Output: A minimum weight Hamiltonian tour of G.

There are many different variations of the traveling sales-
man problem. In this paper we consider a version of TSP
called geometric TSP, in which vertices of the graph are
points in the Euclidean plane and the weight of an edge is
just the Euclidean distance between the two end points of
the edge. We present an algorithm that is a combination of
an ant system and an efficient local optimization algorithm.
Additionally, a preprocessing stage that allows us to deal
with larger input instances efficiently was added. The per-
formance of the algorithm on a set of standard benchmarks
for the geometric TSP showed that the algorithm is quite
competitive against existing heuristics. In fact, it found 37
optimal solutions out of the 40 instances that were tested.

2. THE ALGORITHM
There are two main ideas in our algorithm: the inclusion

of a preprocessing stage and the use of a modified ACS with
local optimization in multi stages. The input graph is first
partitioned into subgraphs of size 3, i.e., triangles. A new
graph is created based on the centroids of the triangles. An
ant colony system algorithm, called mACS and described
later in this section, is used to create a tour of this graph.
The tour is then converted into an initial tour for the original
graph. A local optimization algorithm, such as 2-opt, 3-opt
or Lin-Kernighan, is then used to improve this original tour.
Finally, we run the mACS algorithm on the original graph
using the tour just constructed as a starting tour.

The algorithm consists of two main phases. In the first
phase a good starting tour is created. This tour is then used
as the starting point for the second phase to create a better
tour.

The first phase consists of four stages. The first stage
compacts the given input graph into a smaller graph. The
objective is to reduce the problem size so that we can find
an initial tour, quickly enabling us to deal with larger input
graph. In the second stage, the compacted graph is passed
into mACS to find a TSP tour. The tour found by mACS
is a TSP tour of the compacted graph. This tour is then
converted into a tour for the original input graph in the
third stage, and is locally optimized in the fourth stage.
The resulting TSP tour is now a reasonably good tour of
the input graph and is used as the starting point for phase
two.

In phase two, the mACS algorithm is run using the origi-
nal input graph and the TSP tour from phase one. The tour
found by mACS in this phase is returned as the solution to
the input instance.

271



The main idea of using phase one is based on the expecta-
tion that a good starting tour for mACS will allow mACS to
find a better solution and converge in much less time. The
overall effect is that we can deal with larger input instances,
producing good solutions in small amount of times. The
ACS-TSP algorithm is given in Figure 1.

ACS-TSP(G = (V, E, w))
Phase 1.

(G′ = (V ′, E′, w′))← Compact(G)
tour ←mACS (G′, ∅)
tour ←ConvertTour(G, G′, tour)
tour ←LocallyOptimize(tour)

Phase 2.
bestTour ←mACS (G, tour)

return bestTour

Figure 1: The ACS-TSP Algorithm

mACS is a modified version of the ACS [1]. Our modifica-
tions include flexible state transition and pheromone updat-
ing rules. We also introduce explicit mechanisms for escap-
ing from local optima as well as increasing time efficiency.

In ACS, the parameters q0, α, and ρ are constants that do
not change during the execution of the ACS algorithm. Intu-
itively, q0 determines the relative importance of exploitation
versus biased exploration. Whereas, α and ρ determine the
desirability of the edges.

In mACS, ants explore more at the beginning and toward
the end of the algorithm they tend to exploit more, utilizing
the information that have been accumulated. We accom-
plish this by allowing q0, α and ρ to change in each cycle.

As q0 gets larger exploitation occurs more. More exploita-
tion may direct ants to use the edges of the global best tour
more frequently. To avoid a local optimum, we perturb the
global best tour by erasing some memory from some per-
centage of randomly chosen edges of the tour. Additionally,
when ants find the same tour over and over again or do
not improve the global best tour after a certain number of
iterations we encourage the exploration of edges not used
frequently.

3. EXPERIMENTAL RESULTS
We report the results obtained by running ACS-TSP on

a collection of benchmark problems from TSPLIB [5], a
database of benchmark instances for the TSP problems, and
compare them against the known optimal solutions and best
known results from two other algorithms: ACS and MMAS
[4].

Our algorithm was implemented in C++ and run on a
Pentium IV 3.2GHz processor PC with 1GB of RAM. We
tested our algorithm on symmetric Euclidean TSP instances.
All tests have been carried out for 2500 cycles with 20 trials
per instance. The value of the parameter β was 2 and the
number of ants was 10. We have purposely chosen the values
for β and the number of ants as specified in order to obtain
an equal basis for comparison with ACS.

The results shown in Table 1 list the best tour length,
BEST, and the average tour length, AVERAGE, found by our
algorithm for 20 trials.

Table 1: ACS-TSP solution quality

ACS-TSP

INSTANCE OPTIMUM BEST AVERAGE ACS MMAS

att48 10,628.00 10,628.00 10,628.00
att532 27,686.00 27,686.00 27,701.45 28,147.00 27,686.00
a280 2,579.00 2,579.00 2,579.10
berlin52 7,542.00 7,542.00 7,542.00
bier127 118,282.00 118,282.00 118,282.00
ch130 6,110.00 6,110.00 6,122.60
ch150 6,528.00 6,528.00 6,538.05
d198 15,780.00 15,780.00 15,780.65 15,888.00 15,780.00
d1291 50,801.00 50,801.00 50,938.65 50,801.00
eil51 426.00 426.00 426.60 426.00 426.00
eil76 538.00 538.00 538.00
eil101 629.00 629.00 629.40
fl1400 20,127.00 20,127.00 20,214.35
fl1577 22,249.00 22,294.00 22,551.00 22,977.00 22,286.00
kroA100 21,282.00 21,282.00 21,282.00 21,282.00 21,282.00
kroA200 29,368.00 29,368.00 29,392.25
kroB150 26,130.00 26,130.00 26,139.15
kroB200 29,437.00 29,437.00 29,509.25
kroC100 20,749.00 20,749.00 20,749.00
kroD100 21,294.00 21,294.00 21,294.00
kroE100 22,068.00 22,068.00 22,088.45
lin105 14,379.00 14,379.00 14,379.00
lin318 42,029.00 42,029.00 42,161.45 42,029.00
oliver30 420.00 420.00 420.00
pcb442 50,778.00 50,778.00 50,823.15 50,778.00
pcb1173 56,892.00 56,896.00 57,022.05 56,896.00
pr76 108,159.00 108,159.00 108,159.00
pr107 44,303.00 44,303.00 44,347.70
pr124 59,030.00 59,030.00 59,032.30
pr136 96,772.00 96,772.00 96,787.45
pr144 58,537.00 58,537.00 58,537.00
pr152 73,682.00 73,682.00 73,729.60
pr226 80,369.00 80,369.00 80,369.00
pr439 107,217.00 107,217.00 107,297.85
rat575 6,773.00 6,773.00 6,781.75
rat783 8,806.00 8,806.00 8,822.80 8,806.00
tsp225 3,916.00 3,916.00 3,917.40
u159 42,080.00 42,080.00 42,080.00
u1060 224,094.00 224,484.00 225,430.75 224,455.00
vm1084 239,297.00 239,297.00 239,383.50

4. CONCLUSION
Experimental results show that our hybrid ant system al-

gorithm ACS-TSP outperforms ACS in solution quality and
is comparable to MMAS for symmetric Euclidean TSP in-
stances. The running time of our algorithm can be improved
further by using more sophisticated data structures such as
those suggested by [2, 3].

5. REFERENCES
[1] Dorigo, M. and L. Gambardella, ”Ant Colony System:

A Cooperative Learning Approach to the Traveling
Salesman Problem,” IEEE Transactions on
Evolutionary Computation, 1(1), 1997, pp. 53–66.

[2] Bentley, J.L., “Fast Algorithms for Geometric
Traveling Salesman Problems,” ORSA Journal on
Computing, 4(4), 1992, pp. 387–411.

[3] Fredman, M. L., D. S. Johnson, L. A. McGeoch, and
G. Ostheimer, “Data Structures for Traveling
Salesmen,” Journal of Algorithms, 18, 1995, pp.
432–479.

[4] Stutzle, T. and H. Hoos, “Improvements on the
Ant-System : Introducing the MAX-MIN Ant
System,” Proceedings of Artificial Neural Nets and
Genetic Algorithms, Springer Verlag, Wien, Austria,
1998, pp. 245–249.

[5] TSPLIB: Library of Sample Instances for the TSP.
University of Heilderberg, Department of Computer
Science, February 2005,
http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/.

272


